www.elsevier.com/locate/jfluchem # Novel oxonium compounds of lanthanoids: synthesis of $(H_3O)_3La_2F(AsF_6)_8$, and syntheses and crystal structures of $(H_3O)_8La_2F(AsF_6)_{13}$ and $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ Z. Mazej*, P. Benkič, K. Lutar¹, B. Žemva Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia Received 15 June 2001; accepted 31 August 2001 Dedicated to K.O. Christe on the occasion of his 65th birthday #### **Abstract** Reactions of Ln_2O_3 with AsF_5 in aHF (Ln = La - Lu, aHF = anhydrous hydrogen fluoride) yield solutions of H_3O^+ , solvated Ln^{3+} and AsF_6^- ions. Very similar solutions of these ions may be obtained from combination of various other starting materials, e.g. $LnF_3 - H_2O - AsF_5 - aHF$, $LnF_x(AsF_6)_{3-x} - H_3OAsF_6 - aHF$. From such solutions a new type of oxonium compounds with general formula $(H_3O)_xLn_yF_z(AsF_6)_{x+3y-z}$ have been isolated at ambient temperature. $(H_3O)_3La_2F(AsF_6)_8$ was obtained as a white powder from the solution of La_2O_3 dissolved in $AsF_5 - aHF$ after pumping off all volatiles at room temperature. Colourless crystals of $(H_3O)_8La_2F(AsF_6)_{13}$ were prepared by slow static evaporation from a solution obtained after solvolysis of solid $(H_3O)_3La_2F(AsF_6)_8$ in aHF at ambient conditions. Colourless crystals of $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ were prepared by the reaction of La_2O_3 with AsF_5 and aHF under solvothermal conditions above the critical temperature of AsF_5 . Similar reactions of other oxides Ln_2O_3 (Ln = Nd, Sm, Keywords: Oxonium salts; Lanthanoid(III) hexafluoroarsenates; Anhydrous HF; Lewis acids ## 1. Introduction In 1975, Christe et al. reported about the synthesis of H_3O^+ salts containing AsF_6^- and SbF_6^- anions. H_3OAsF_6 and H_3OSbF_6 were prepared as crystalline solids from the $H_2O-HF-AsF_5$ and the $H_2O-HF-SbF_5$ system, respectively [1]. Both salts possess unusual thermal stability. H_3OAsF_6 and H_3OSbF_6 decompose at about 466 and 630 K, respectively. Nine years later, Christe et al. reported about characterisation of H_3OAsF_6 and H_3OSbF_6 by X-ray and neutron diffraction techniques, DSC measurements, and vibrational spectroscopy [2]. H_3OAsF_6 reacts with $M(AsF_6)_2$ (M = divalent metal) in anhydrous hydrogen fluoride (aHF) at room temperature yielding novel oxonium salts $H_3OM(AsF_6)_3$ (M = Mn [3], Fe [4], Co [3], Ni [3]). Analogous reactions in the systems Ln(AsF₆)₃–H₃OAsF₆–aHF or Ln₂O₃–AsF₅–aHF (Ln = La–Lu) are yielding new oxonium salts of lanthanoids with general formula $(H_3O)_x$ Ln_yF_z(AsF₆)_{x+3y-z}. The present paper describes the synthesis of three lanthanum compounds $(H_3O)_3$ La₂F(AsF₆)₈, $(H_3O)_8$ La₂F(AsF₆)₁₃ and $(H_3O)_4$ La₂-F(AsF₃)₂(AsF₆)₉, including crystal structures of the latter two compounds. Results of reactions between some other Ln₂O₃ (Ln = Nd, Sm, Gd, Dy, Ho, Tm) and AsF₅ in aHF are also presented. #### 2. Results and discussion # 2.1. Reactions of Ln₂O₃ with AsF₅ in aHF Reactions of Ln₂O₃ in the superacidic medium AsF₅–aHF at 298 K proceed according to the formal equation: $$\text{Ln}_2\text{O}_3 + n\text{AsF}_5 + m\text{HF} \rightarrow (\text{H}_3\text{O}^+)_3[\text{Ln}(\text{HF})_x^{3+}]_2(\text{AsF}_6^-)_9 + (n-9)\text{AsF}_5 + (m-9-2x)\text{HF},$$ $n > 9, \quad m > 300$ (1) ^{*}Corresponding author. Fax: +386-61-123-2125. *E-mail address*: zoran.mazej@ijs.si (Z. Mazej). ¹ Deceased on 2 September 2000. In clear solutions obtained from such reactions, solvated lanthanoid cations $Ln(HF)_x^{3+}$ [5], H_3O^+ cations and $AsF_6^$ anions are formed. This is well in agreement with the literature data [6] derived from CeO2 dissolved in aHF and acidified with SbF₅, where authors anticipated solvated Ce⁴⁺, H₃O⁺ and SbF₆⁻ ions. In solutions of AsF₅ in anhydrous hydrogen fluoride H₂F⁺ along with AsF₅, AsF₆⁻ and As₂F₁₁ species form in an equilibrium [7]. Water may be synthesised in situ from Ln₂O₃ and aHF. In AsF₅-aHF systems, water behaves as a very strong base and consequently displaces the weaker base HF from H₂F⁺, thus forming H₃O⁺ ions directly in solution [1]. The rate of reaction between Ln₂O₃ and liquid aHF at room temperature rapidly diminishes along the lanthanoid series of elements. Stronger bases at the beginning of the series (e.g. La₂O₃, Sm₂O₃) react quickly and pure trifluorides are obtained within a few days. The approach using aHF as a reaction medium proved very convenient also in the syntheses of some other binary fluorides in pure form [8]. The reactions of more acidic Ln₂O₃ (e.g. Gd₂O₃, Dy₂O₃) are rather slow, as within of time required to complete formation of LaF₃ or SmF₃, only about 15% of GdF₃ or DyF₃ are formed. Even after 35 days, only about 30% of the starting Gd₂O₃ or Dy₂O₃ had been converted to GdF3 or DyF3, respectively. However, in the presence of strong Lewis acids reaction of any Ln₂O₃ in aHF proved much quicker, the more basic representatives were completely dissolved within a few minutes, and even the slowest reaction was finished within 30 min. Similar observations were obtained at reactions of Ln₂O₃ with elemental fluorine [9], e.g. La₂O₃ reacts violently at room temperature to LaF₃, Nd₂O₃, Sm₂O₃ and Eu₂O₃ start to react at 533 K and reactions are completed at 823 K, while Ln_2O_3 (Ln = Gd, Dy, Ho, Er, Tm, Yb, Lu) are not completely transformed to corresponding trifluorides even at 823 K. Further, decreasing basicity of lanthanoid metals along the series is well established in many systems. Reactions of the same acid or base along the series frequently show the borderline of basic/ acidic properties in the series, e.g. reactions of medium strong base XeF₆ do not proceed from LaF₃ to GdF₃. The required acidity of LnF₃ is achieved with DyF₃, 3XeF₆·DyF₃ and $6XeF_6 \cdot LnF_3$, (Ln = Ho–Lu) were isolated [10]. The stoichiometric ratio Ln_2O_3 : $AsF_6=1:9$ given in Eq. (1) for the aHF solution was confirmed by titration. The last traces of La_2O_3 dissolved in aHF when exactly the molar ratio La_2O_3 : $AsF_5=1:9$ had been reached. In the Raman spectrum of such solution, only a broad peak around 685 cm⁻¹ was observed, indicating the presence of AsF_6^- anions [11]. Of course, combinations of H_3O^+ , $Ln(HF)_x^{3+}$ and AsF_6^- ions in aHF solution are also obtained from other starting mixtures, e.g. LnF_3 – H_2O – AsF_5 –aHF and $LnF_x(AsF_6)_{3-x}$ – H_3OAsF_6 –aHF. ## 2.2. Isolation of $(H_3O)_3La_2F(AsF_6)_8$ Up to now, we did not succeed to isolate the compound $[H_3O^+]_3[Ln(HF)_x^{3+}]_2[AsF_6^-]_9$ which represents the main product in above-mentioned equation. After the solvent aHF together with excess AsF₅ have been condensed off respective solutions at room temperature, the solid residue slowly releases some gaseous material in vacuum. In case of La, this process stops precisely after one mole of AsF₅ per formula unit has been released, yielding (H₃O)₃La₂F(AsF₆)₈. As will be shown later, changes of reaction conditions at the step of product isolation give rise to variety of compositions of the particular product. # 2.3. Isolation of reaction products with Ln = Nd, Sm, Gd, Dy, Ho, Tm In the case of less basic representatives of lanthanoid series, much longer times of pumping are required than with La to reach products stable at room temperature (several 10 h versus few hours). Fine powders of typical but faint colour for the particular Ln³⁺ ion are obtained. Necessity of more extended pumping is associated with release of more than just one molecule of AsF₅ per formula unit. In the case of Nd and Sm, two additional molecules of AsF₅ were released, resulting in formation of compounds (H₃O)₃Ln₂-F₃(AsF₆)₆. However, while for Nd isolation proceeded at room temperature, 273 K had to be maintained in the case of Sm (Fig. 1). This is again in agreement with decreasing basicity of LnF₃ type materials along the series. Weight balance and chemical analyses of Gd, Dy, Ho and Tm reaction products (Table 1) indicate that not only AsF₅ is released during pumping under dynamic vacuum. Respective IR-spectra suggest evaporation of H₂O and/or H₃OAsF₆. So far, it has to remain open if isolated products from these reactions are single phase and what may be their precise composition. However, below 253 K, all products completely Fig. 1. Pumping curve in the course of isolation of $(H_3O)_3Sm_2F_3(AsF_6)_6$ at 273 K. Table 1 Reactions between Ln_2O_3 and AsF_5 in aHF ($Ln=Gd,\,Dy,\,Ho,\,Tm$) | Starting compound | Weight of product (g) | Chemical analysis | | | | |-------------------|-----------------------|-------------------|-------|--------|----------------------| | | | Ln (%) | F (%) | As (%) | H ₂ O (%) | | Gd_2O_3 | 2.9730 | 28.5 | 40.1 | 24.7 | 3.0 | | Dy_2O_3 | 2.0420 | 29.8 | 39.4 | 24.3 | _ | | Ho_2O_3 | 2.1190 | 29.7 | 39.8 | 26.7 | 3.0 | | Tm_2O_3 | 3.1962 | 31.3 | 38.1 | 26.9 | _a | ^a Product was insoluble in organic solvent. dissolve in aHF without solvolysis. This also proves that materials insoluble under these conditions like LnF₃, Ln₂O₃ or LnOF are definitely not among reaction products. ## 2.4. Solvolysis of $(H_3O)_3La_2F(AsF_6)_8$ in aHF $(H_3O)_3La_2F(AsF_6)_8$ is solvolysed in aHF at room temperature (like $LnF_x(AsF_6)_{3-x}$ [13]), according to following equation: $$6(H_3O)_3La_2F(AsF_6)_8 \xrightarrow{aHF,298 \text{ K}} 5(H_3O)_3[La(HF)_x]_2(AsF_6)_9 + 3H_3OAsF_6 + 2LaF_3$$ (2 While the X-ray powder diffraction (XRD) pattern of the precipitate showed only characteristic lines of LaF₃, respective pattern of the solid recovered from the supernatant solution showed only the diagram of (H₃O)₃La₂F(AsF₆)₈. 2.5. Crystallisation from aHF solutions containing H_3O^+ , La^{3+} and AsF_6^- ions at room temperature, and crystallisation using solvothermal conditions of AsF_5 As the XRD pattern of (H₃O)₃La₂F(AsF₆)₈ is quite a complicated one (Section 4.5), numerous attempts were made to grow single crystals from various solutions in aHF. In all cases, single crystals of (H₃O)₈La₂F(AsF₆)₁₃ among white powder material were isolated. The largely different molar ratio of H₃O to La in the crystals as compared to the starting solutions indicates that the powder phase most likely is not homogeneous. In general, crystal growth in these systems is slow. Close to the end of such a process, the very viscous, honey-like material has to sit for several weeks, before finally crystals start to develop. The attempt was made to synthetise $(H_3O)_8La_2F(AsF_6)_{13}$ compound in a bulk quantities (see Section 4.10). Though corresponding molar ratio of $H_3O:LaF_3$ (4:1) was used the $(H_3O)_3La_2F(AsF_6)_8$ compound was synthesised, however, in the mixture with H_3OAsF_6 . Therefore, the kinetic reasons are the most probable for obtaining the phase $(H_3O)_8La_2F(AsF_6)_{13}$ in the crystalline form. This and previous results (Section 2.3) show that from the solutions in which H_3O^+ , solvated Ln^{3+} and AsF_6^- ions are present the whole set of different compounds of the type $(H_3O)_xLn_yF_z(AsF_6)_{x+3y-z}$ is possible to isolate under different conditions, e.g. $(H_3O)_3La_2F(AsF_6)_8$, $(H_3O)_8La_2F(AsF_6)_{13}$, $(H_3O)_3Ln_2F_3(AsF_6)_6$, Ln = Nd, Sm. Phases which can adopt the chain structure of $(H_3O)_8La_2F(AsF_6)_{13}$ or $(H_3O)_4La_2F(AsF_6)_{13}$ for $(H_3O)_4La_2F(AsF_6)_{13}$ or The synthesis of these compounds is possible also at higher temperatures. The solvothermal conditions of AsF_5 above its critical temperature (337 K [12]) are suitable for the preparation of single crystals. In the described experiment, the phase $(H_3O)_4La_2F(AsF_6)_9$ was stabilised with additional ligand AsF_3 . The most probable way for the formation of AsF_3 is reduction of some AsF_5 on the wall of protective metal vessel of the Teflon liner due to permanent diffusion of AsF_5 through the Teflon. Finally, Fig. 2 shows the scheme of the reactions initiated by the reaction of La_2O_3 with AsF_5 in aHF, and which were discussed in above items. Owing to clarity the stoichiometry of equations is omitted. # 2.6. Crystal structures of $(H_3O)_8La_2F(AsF_6)_{13}$ and $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ (H₃O)₈La₂F(AsF₆)₁₃ crystallises in the monoclinic space group *P*2₁/*c* (no. 14) with two formula units in the unit cell. Pertinent crystallographic data are given in Table 2 and selected interatomic distances and angles in Table 3. The labelling scheme is given in Fig. 3a. The basic unit of the structure is formed by one fluorine atom (F1) located at a centre of symmetry and connecting two lanthanum atoms. This arrangement is bridged by four AsF₆⁻ anions (As3, As5) with bridging fluorines of each anion in *cis*-position. Coordination of each La atom is further extended by three additional, non-bridging, AsF₆ units (As2, As4, As6). The environment of each La atom is completed by a Fig. 2. Scheme of the reactions initiated by the reaction of La₂O₃ with AsF₅ in aHF (owing to clarity the stoichiometry of equations is omitted). Table 2 Crystal data and structure refinement for $(H_3O)_8La_2F(AsF_6)_{13}$ and $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ | Empirical formula | (H ₃ O) ₈ La ₂ F(AsF ₆) ₁₃ | (H ₃ O) ₄ La ₂ F(AsF ₃) ₂ (AsF ₆) ₉ | |--|--|--| | Formula weight | 2904.97 | 2337.04 | | Temperature (K) | 293 | 293 | | Wavelength (pm) | 71.07 | 71.07 | | Crystal system | Monoclinic | Triclinic | | Space group | $P2_1/c$ (no. 14) | $P\overline{1}$ (no. 2) | | Unit cell dimensions | | | | a (pm) | 1079.3(3) | 1064.8(3) | | b (pm) | 2859.0(7) | 1073.3(4) | | c (pm) | 1068.0(3) | 1213.9(3) | | α (°) | 90 | 75.53(2) | | β (°) | 109.310(8) | 64.79(2) | | γ (°) | 90 | 70.07(2) | | Volume (nm ³) | 3.1101(15) | 1.1711(6) | | Z | 2 | 1 | | Density (calculated) (Mg/m ³) | 3.102 | 3.314 | | Absorption coefficient (mm ⁻¹) | 8.489 | 9.777 | | Theta range for data collection (°) | 1.42–27.99 | 2.03-30.00 | | Index ranges | $-12 \le h \le 14, -28 \le k \le 38, -8 \le l \le 14$ | $-14 \le h \le 14, -17 \le k \le 17, -17 \le l \le 17$ | | Reflections collected | 12219 | 14136 | | Independent reflections | $7136 (R_{\rm int} = 0.026)$ | $6819 (R_{\rm int} = 0.054)$ | | Absorption correction | Multi-scan | ψ-scan | | Maximum and minimum transmission | 0.183, 0.122 | 0.231, 0.106 | | Refinement method | Full-matrix least-squares on F^2 | Full-matrix least-squares on F^2 | | Data/restraints/parameters | 5308/0/464 | 5374/0/356 | | Goodness-of-fit on F^2 | 1.143 | 1.081 | | Final <i>R</i> indices $[I > 2\sigma(I)]$ | R1 = 0.0546, wR2 = 0.1166 | R1 = 0.0417, wR2 = 0.1023 | | R indices (all data) | R1 = 0.0773, wR2 = 0.1291 | R1 = 0.0748, wR2 = 0.1085 | | Extinction coefficient | 0.00071(9) | 0.0022(2) | | Largest diffraction peak and hole (electron nm ⁻³) | 2211, -2159 | 1354, -1491 | trans-bridging AsF₆ anion (As1), finally leading to a trans zig-zag chain of alternating La₂F and AsF₆ units. The chains are running along [1 0 0] direction, respective view down the a-axis exhibits the typical rod packing (Fig. 4). Four H₃O⁺ cations and one non-coordinating AsF₆⁻ anion (As7) per La atom supplement the chains in formation of the entire structure. Lanthanum is nine coordinated with fluorine atoms F31, F41, F51, and F32', F52', F61 at the apexes of a trigonal prism (Fig. 5). Three additional ligands F1, F11 and F21 are capping the rectangular faces of the prism.² The structure of $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ is closely related to the structure of $(H_3O)_8La_2F(AsF_6)_{13}$. It crystallises in the triclinic space group $P\overline{1}$ (no. 2) with one formula unit within the cell. Pertinent crystallographic data are given in Table 2, and selected interatomic distances and bond angles in Table 4. The labelling scheme is given in Fig. 3b. As emphasised in Fig. 3b, the main difference within the basic structural unit, as compared to $(H_3O)_8La_2F(AsF_6)_{13}$, is represented by the replacement of one particular AsF_6 unit (As2 and As2') by an AsF_3 molecule. Furtheron, there are no non-coordinating AsF_6 units incorporated in the structure. Accordingly, only two ${\rm H_3O^+}$ cations per La atom are needed to compensate negative charges (Fig. 6). The coordination of La is similar as in the case of $({\rm H_3O})_8{\rm La_2F}({\rm AsF_6})_{13}$ with slight differences in F-La-F angles caused by different steric activity of ${\rm AsF_3}$ unit compared to ${\rm AsF_6}$ unit in $({\rm H_3O})_8{\rm La_2F}({\rm AsF_6})_{13}$. As mentioned above, both structures are characterised by very similar chain-like arrangement. A single fluoride ion (F1) is located on a centre of symmetry. The La–F1 distances are almost identical in both structures (222.03(7) and 222.36(7) pm, respectively). This particular distance is considerably shorter than all other La-F distances within these two structures. It is also shorter than La-F distances in LaF₃ (242–264 pm) [15] or those in other lanthanum hexafluoroarsenates like in $La(HF)_2(AsF_6)_3$ (243.3–282.6 pm) [16]. On the other hand, all other eight distances in the coordination sphere of La are comparable to these compounds, 240.7-272.7 pm in the case of $(H_3O)_8La_2F(AsF_6)_{13}$, and $242.5-274.0 \text{ pm for } (H_3O)_4La_2F(AsF_3)_2(AsF_6)_9. La-F-La$ bridges were also found in recently described structures of $La_2F(AuF_4)_5$ [17], and $LaFSnF_6$ [18]. In $La_2F(AuF_4)_5$, bridging distance is 229.5(8) pm and the bridging angle is 160° . In the structures of $(H_3O)_8La_2F(AsF_6)_{13}$ and $(H_3O)_4$ -La₂F(AsF₃)₂(AsF₆)₉, the La–F–La linkages are bridged by four AsF₆ units, while in La₂F(AuF₄)₅, only three AuF₄ units are in bridging position. In contrast, however, the AuF₄ units $^{^2}$ Preliminary results about $(H_3O)_8La_2F(AsF_6)_{13}$ and $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ were presented at *The International Conference on Fluorine Chemistry'99* in Yokohama [13] and later published in special issue of *Journal of Fluorine Chemistry* [14], where some figures of the crystal structures are already available. Table 3 Selected interatomic distances (pm) and bond angles (°) for $(H_3O)_8La_{2-}F(AsF_6)_{13}{}^a$ | 1 (1101 6) 13 | | |---|---| | La(1)-F(1) | 222.03(7) | | La(1)-F(11) | 248.4(5) | | La(1)-F(21) | 247.6(6) | | La(1)-F(31) | 272.7(7) | | La(1)-F(32)' | 251.6(6) | | As(1)-F(11) | 175.9(5) | | As(2)-F(21) | 176.0(6) | | As(3)-F(31) | 174.5(7) | | As(3)'-F(32)' | 175.9(6) | | As(4)-F(41) | 177.2(6) | | As(5)-F(51) | 173.9(6) | | As(5)'-F(52)' | 173.8(6) | | As(6)-F(61) | 171.0(8) | | La(1)-F(41) La(1)-F(51) La(1)-F(52)' La(1)-F(61) La(1)-F(61) La(1)-F(1)-La(1)' La(1)-F(11)-As(1) La(1)-F(21)-As(2) La(1)-F(31)-As(3) La(1)-F(32)'-As(3)' La(1)-F(41)-As(4) La(1)-F(51)-As(5) La(1)-F(52)'-As(5)' La(1)-F(52)'-As(6) | 241.8(6)
254.2(6)
260.9(6)
240.7(9)
180
166.6(3)
167.1(4)
157.8(3)
156.4(3)
162.2(4)
149.2(3)
149.8(4)
154.3(9) | | F(51)–As(5)–F(52) | 89.2(3) | | F(31)–As(3)–F(32) | 87.8(3) | | | | ^a Symmetry operations used to generate equivalent atoms: -x, -y, -z. form a three-dimensional network via additional connectivity. Flexibility of such bridges is indicated in the case of LaFSnF₆ [18], where the distance La–F of 230.7 pm is comparable to La–F distance in La₂F(AuF₄)₅ while the bridging angle La–F–La is much smaller (143.8°). Comparison of bond distances and angles in AsF_6 units in $(H_3O)_8La_2F(AsF_6)_{13}$ show that they are distorted, due to their different functions in the structure. There are four different kinds of AsF_6 units: AsF_6 units (As3, As5) are bridging two La atoms, AsF_6 units (As1) are connecting La_2F units into chain, AsF_6 units (As2, As4, As6) are connected only to one La atom and are without further connections, and AsF_6 units (As7) which lie between the chains without any connections. As expected, distances between As and bridging F atoms in all three groups are longer (171.0(8)–177.2(6) pm) than respective distances to terminal fluorines (163.7(8)–170.7(8) pm). In the case of $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$, there are only three different kinds of AsF_6 units: AsF_6 units (As3, As5) are bridging two La atoms, AsF_6 units (As1) are connecting La_2F units into chain, and AsF_6 units (As4, As6) are connected only to one La atom and are without further connections. Distances between As atoms and bridging F atoms in all three groups are in the range of 173.0(7)-178.2(5) pm. Table 4 Selected interatomic distances (pm) and bond angles (°) for $(H_3O)_4La_2$ - $F(AsF_3)_2(AsF_6)_9^a$ | 1 (1151 3)2(1151 6)9 | | |----------------------|-----------| | La(1)-F(1) | 222.36(7) | | La(1)–F(11) | 245.4(5) | | La(1)–F(21) | 249.8(5) | | La(1)–F(31) | 274.0(6) | | La(1)–F(32)' | 253.6(5) | | As(1)–F(11) | 176.2(5) | | As(3)–F(31) | 174.5(5) | | As(3)'-F(32)' | 176.3(5) | | As(4)–F(41) | 178.2(5) | | As(5)–F(51) | 174.9(6) | | As(5)'-F(52)' | 176.9(5) | | As(6)–F(61) | 173.0(7) | | As(2)–F(21) | 177.6(5) | | As(2)–F(25) | 168.2(6) | | As(2)–F(26) | 168.3(7) | | La(1)-F(41) | 242.5(5) | | La(1)–F(51) | 254.0(6) | | La(1)-F(52)' | 258.6(5) | | La(1)–F(61) | 250.3(9) | | La(1)-F(1)-La(1)' | 180 | | La(1)-F(11)-As(1) | 161.9(3) | | La(1)-F(21)-As(2) | 167.0(3) | | La(1)-F(31)-As(3) | 158.9(3) | | La(1)-F(32)'-As(3)' | 152.2(3) | | La(1)-F(41)-As(4) | 159.3(3) | | La(1)-F(51)-As(5) | 148.7(3) | | La(1)-F(52)'-As(5)' | 147.4(3) | | La(1)-F(61)-As(6) | 131.6(7) | | F(51)-As(5)-F(52) | 88.7(3) | | F(31)-As(3)- $F(32)$ | 87.4(2) | | | | ^a Symmetry operations used to generate equivalent atoms: -x, -y, -z. Distances to terminal fluorines are in the range of 162.7(8)–170.9(8) pm. Non-bridging distances in AsF_3 unit are 168.2(6) and 168.3(7) pm what is close to distances in AsF_3 (169.9-172.1 pm) [19] and comparable to terminal distances in some other compounds, e.g. in $M(AsF_6)_2 \cdot 2AsF_3$, (M = Fe, Co, Ni), (169.1(4) pm for Ni compound, 168.8(4) pm for Co compound and 169.3(4) pm for Fe compound) [20]. The dramatic change of bridging distance in AsF_3 (177.6(5) pm) shows that the bonding is rather strong. In accordance with this is also the distance $La-F(21)AsF_2 = 249.8(5)$ pm which is in the range of distances to $La-FAsF_5$. This shows that the bonding of AsF_6 units is not weaker than the bonding of AsF_6 units. #### 3. Concluding remarks Results of reactions in the system Ln_2O_3 –As F_5 –aHF indicated that a variety of phases are formed. They can be written with general formula $(H_3O)_xLn_yF_z(AsF_6)_{x+3y-z}$. At the moment, only $(H_3O)_3La_2F(AsF_6)_8$, $(H_3O)_8La_2$ - $F(AsF_6)_{13}$, and $(H_3O)_3Ln_2F_3(AsF_6)_6$ (Ln=Nd,Sm) have been isolated. Additionally As F_3 can be bonded to these Fig. 3. Basic structural unit in (a) $(H_3O)_8La_2F(AsF_6)_{13}$ and (b) $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ (two AsF_6 units marked with asterisk are replaced by AsF_3 molecules) showing the labelling scheme. Fig. 4. Formation of chains in the crystal structure of the $(H_3O)_8La_{2-}F(AsF_6)_{13}$. Fig. 5. Coordination of La atom in (H₃O)₈La₂F(AsF₆)₁₃. products yielding a new type of compounds, e.g. $(H_3O)_4La_2$ - $F(AsF_3)_2(AsF_6)_9$. In these systems, the preparation of pure compounds and their characterisation only by mass balance, chemical analysis and spectroscopic methods is almost impossible. The most prospective way to elucidate these Fig. 6. Formation of chains in the crystal structure of the $(H_3O)_4La_2$. $F(AsF_3)_2(AsF_6)_9$. systems is the preparation of single crystals of different phases. This work is now in progress. #### 4. Experimental #### 4.1. Apparatus and reagents A nickel vacuum line with a mechanical pump, a mercury diffusion pump, and soda lime scrubbers for removal of volatile fluorides were used. The part of the vacuum line used for transfer of aHF and AsF5 was entirely made from Teflon, FEP or PFA in order to diminish corrosion and to avoid associated formation of hydrogen. This part of the line was equipped with a Monel Helicoid pressure gauge (0-1500 Torr (±0.3%), Bristol Babcock Inc.) connected via a Teflon valve. PFA reaction vessels (16 mm i.d. × 19 mm o.d.) equipped with Teflon valves, and Teflon-coated mixing bars were used in all experiments. La₂O₃ (Koch Light Laboratories Ltd., 99.9 (REO)), Nd₂O₃ (Koch Light Laboratories Ltd., 99.5 (REO)) and Sm₂O₃ (Ventron, Alfa Products, 99.9 (REO)) were heated prior use at 1373 K for 2 h in the air to remove adsorbed H₂O and CO₂ [21]. Chemical analyses after the heating gave the following metal content: La₂O₃: found: 85.4, calcd.: 85.27; Nd₂O₃: found: 85.8, calcd.: 85.73; Sm₂O₃: found: 86.1, calcd.: 86.23. Gd₂O₃ (Ventron Alfa Products, 99.9 (REO)), Dy₂O₃ (Rare Earth Products Ltd., 99.9 (REO)), Ho₂O₃ (Rare Earth Products Ltd., 99.9 (REO)) and Tm₂O₃ (Ventron Alfa Products, 99.9 (REO)) were used as supplied. Chemical analyses of metal content: Gd₂O₃: found: 86.6, calcd.: 86.76; Dy₂O₃: found: 87.1; calcd.: 87.13; Ho₂O₃: found: 87.2, calcd: 87.30; Tm₂O₃: found: 87.3, calcd.: 87.56. LaF₃ (Ventron Alfa Products, 99.9 (REO)) was used as supplied. Chemical analysis of LaF₃ showed: La, found: 70.4, calcd.: 70.91; F, found: 28.3, calcd.: 29.09. All lanthanoid compounds used as starting materials were also checked by XRD methods. AsF₅ was synthesised by pressure fluorination of As₂O₃ (Johnson Matthey GmbH) as previously described for PF₅ [22]. Anhydrous hydrogen fluoride (aHF) (Praxair, 99.9) was treated with K₂NiF₆ for several days prior to use. #### 4.2. Instrumentation Non-volatile materials and single crystals were manipulated in a glove box (MBraun). The residual of water in the atmosphere within the glove box never exceeded 1 ppm. XRD patterns were obtained by the Debye–Scherrer method with Straumanis loading using Cu $K\alpha$ radiation. Powder samples and selected single crystals were enclosed in 0.3 mm thin-walled quartz glass capillaries. ## 4.3. Chemical analysis Lanthanoid ions were determined by complexometric titration; [23–25] total fluoride ion content was determined with an ion selective electrode [26,27]; AsF_6^- species were determined gravimetrically as insoluble tetraphenylarsonium salt [28,29]; arsenic was determined by the ICP method [30]; and the content of H_2O in the H_3O^+ salts was determined by dissolving a known amount in methanol before titrating evolved H_2O with Karl Fischer reagent. The water content determined this way is systematically lower than the calculated one. This is due to the fact that all samples incompletely dissolve in methanol. However, up to now we have not been able to find a better organic solvent. ## 4.4. Reactions of Ln_2O_3 with aHF (Ln = La, Sm, Gd, Dy) Onto about 0.200 g of particular Ln_2O_3 (Ln=La, Sm, Gd, Dy), about 5 ml aHF was condensed and the mixture was stirred for 4 days at room temperature (Table 5). Weight balance, chemical analysis and XRD patterns of the insoluble reaction products showed in the case of La and Sm total transformation to corresponding LnF_3 . In the case of Gd and Dy, only about 15% LnF_3 was isolated after 4 days. Therefore, reactions were continued for additional 4 weeks, after which period another 15% of Gd_2O_3 and Dy_2O_3 had been transformed to respective trifluorides. #### 4.5. Synthesis of $(H_3O)_3La_2F(AsF_6)_8$ In a glove box, 0.775 g (2.38 mmol) La₂O₃ was loaded into a PFA reaction vessel. Then aHF (\sim 6 ml) was condensed onto La₂O₃ and excess AsF₅ (La₂O₃: AsF₅ = 1:12) was added, both at 77 K. While warming to room temperature the solid phase immediately dissolved and a clear colourless solution was obtained. The solution was stirred for few hours before it was cooled again to 77 K. Pressure measurement at this temperature proved that no oxygen had Sm_2O_3 Gd₂O₃ Dy₂O₃ 0.2158 0.2286 0.2358 Compound $Ln_2O_3(g)$ Ln₂O₃ (mmol) LnF₂ Chemical analysis Calculated (g) Obtained (g) Calculated for LnF₃ (g) Obtained for products (g) Ln (%) F (%) Ln (%) F (%) La₂O₃ 0.2064 0.63 0.2468 0.2471 70.91 29.09 70.6 29.0 0.2752 0.2355 0.2425 0.2571 0.2704 0.2766 Table 5 Reactions between Ln_2O_3 and aHF ($Ln=La,\ Sm,\ Gd,\ Dy$) at room temperature 0.62 0.63 0.63 been evolved. Subsequently, aHF and AsF₅ were pumped away at 293 K. Before the solvent was finally removed, a very dense liquid with low vapour pressure was obtained from which suddenly a solid product precipitated. During pumping, weight loss was carefully recorded, and pumping was continued at 293 K until the product was loosing <8 mg (~0.05 mmol) of AsF₅ per mmol h. This was reached after several hours, at which point the product was without vapour pressure at 273 K. Then 4.438 g of a white solid were isolated, corresponding to 2.38 mmol (H₃O)₃La₂F(AsF₆)₈. Chemical analysis: found (calcd.): H₂O, 2.7 (2.90); La, 14.6 (14.90); AsF₆, 80.9 (81.03); F, 49.8 (49.91). XRD pattern of the compound with *d*-values and intensities is in Table 7. # 4.6. Reactions of Ln_2O_3 with AsF_5 in aHF, Ln = Nd, Sm, Gd, Dy, Ho, Tm Reactions of Ln_2O_3 (Ln = Nd, Sm, Gd, Dy, Ho, Tm) with AsF_5 in aHF were carried out similarly as described for La_2O_3 . Reaction conditions are shown in Table 6. In all cases, clear solutions with typical colour of the particular Ln^{3+} element were obtained. Reaction time depended on excess of AsF_5 used, and on the position of the element in the lanthanoid series. Ln_2O_3 at the end of the series and, therefore, with lower basicity react slower, but all reactions were finished within 30 min. Pressure measurements at 77 K showed that there were not any volatiles present at this temperature. Isolation of products always proceeded through a step of highly viscous solution, an indication of very large solubility in aHF. In the case of Nd, the weight of isolated product was 4.022 g; calculated weight for Table 6 Starting conditions for reactions between Ln_2O_3 and AsF_5 in aHF ($Ln=Nd,\ Sm,\ Gd,\ Dy,\ Ho,\ Tm$) | Ln_2O_3 | Ln_2O_3 (g) | Ln ₂ O ₃ (mmol) | AsF ₅ (g) | AsF ₅ (mmol) | aHF
(ml) | |--------------------------------|---------------|---------------------------------------|----------------------|-------------------------|-------------| | Nd ₂ O ₃ | 0.8948 | 2.66 | 7.65 | 45.03 | 6 | | Sm_2O_3 | 0.7405 | 2.12 | 5.70 | 33.55 | 9 | | Gd_2O_3 | 0.9696 | 2.67 | 7.10 | 41.79 | 7 | | Dy_2O_3 | 0.6999 | 1.88 | 4.99 | 29.37 | 7 | | Ho ₂ O ₃ | 0.7279 | 1.93 | 5.32 | 31.31 | 7 | | Tm_2O_3 | 0.9315 | 2.42 | 8.60 | 50.62 | 7 | $(H_3O)_3Nd_2F_3(AsF_6)_6$ is 4.084 g. Chemical analysis of the product showed: Nd (19.3), F (46.9), As (29.5), H_2O (2.7); calcd. for $(H_3O)_3Nd_2F_3(AsF_6)_6$: Nd (18.78), F (48.24), As (29.26), H_2O (3.52). In the case of Sm, the pumping was carried out at 273 K (Fig. 1). The weight of isolated product was 3.217 g; calculated weight for $(H_3O)_3Sm_2F_3(AsF_6)_6$ is 3.282 g. In the case of Gd, Dy, Ho and Tm, reaction products were isolated at room temperature. Weight and chemical analyses of the products are given in Table 1. All these products turned out to be amorphous in XRD experiments. 27.50 26.60 25.97 72.2 27.5 4.8 4.4 # 4.7. Titration of La_2O_3 with AsF_5 in aHF 72.50 73.40 74.03 In additional experiments at 293 K, the exact amount of AsF₅ required for complete dissolution of La₂O₃ in excess aHF was determined. Onto La₂O₃ (0.755 g, 2.38 mmol), 5 ml of aHF was condensed at 77 K. Small portions of AsF₅ gas, monitored by measuring pressure and weight, were added stepwise to the suspension of La₂O₃ (which quickly became a suspension of La₂O₃-LaF₃-aHF mixture, see Section 4). In the first step, 14.79 mmol of AsF₅ was added, corresponding to molar ratio La_2O_3 : AsF₅ = 1:6.22. After 3 days of stirring, there was still quite large amount of solid in the reaction mixture. Then the next two metering of AsF₅ which corresponded to the total molar ratio La_2O_3 : AsF₅ = 1:7.95 (reaction time was 3 h) and La_2O_3 :AsF₅ = 1:8.43 (reaction time was 24 h) were performed. After these two additions, the small amount of undissolved material was still observed. When the last portion of AsF₅ (1.37 mmol) was added and the molar ratio La_2O_3 : AsF₅ = 1:9 was reached within 1 h all remaining solid was dissolved and clear solution was obtained. # 4.8. Solvolysis of $(H_3O)_3La_2F(AsF_6)_8$ in aHF The reaction was carried out in a double T-shaped reaction vessel. Then 5 ml of aHF was condensed onto 1.914 g (1.03 mmol) of (H₃O)₃La₂F(AsF₆)₈ at 77 K. After warming up to 253 K, a clear solution was obtained, which remained completely clear till 259 K. Above this temperature, precipitation started to occur, the amount of precipitate increasing with rising temperature. Finally, the sample was left at room temperature for 2 days. After separating precipitate and solution by decantation, XRD pattern of the precipitate Table 7 X-ray powder diffraction (XRD) data for $(H_3O)_3La_2F(AsF_6)_8^a$ I/I_0 d (pm) 1 1466.286 6.023 6.47 2 1192.035 7.410 17.43 3 1155.911 13.44 7.642 4 1079.770 8.182 4.95 5 9.850 897.211 100.00 6 862.292 10.250 18.26 7 30.96 810.046 10.913 8 766.965 11.528 5.26 9 707.793 10.90 12.496 10 678.390 13.040 1.92 11 648.064 13.653 12.81 12 612,710 14.445 12.06 13 595.080 14.875 3.44 14 574.362 15.415 4.35 15 540.518 16.386 7.68 16 17.285 28.69 512.607 17 484.506 18.296 15.43 18 475.306 18.653 4.95 19 462.324 19.182 18.19 20 446.187 19.883 21.71 21 429.935 20.642 23.00 22 422.787 20.995 20.76 23 415.335 21.376 31.64 24 21.676 12.23 409.660 25 401.334 22.131 21.43 26 392.300 22.648 26.77 27 388.644 22.864 26.17 28 23.187 383.289 73.44 29 378.082 23.511 92.23 30 369.385 24.073 70.83 31 362.001 24.572 53.68 32 351.766 25.298 97.60 33 345.402 25.772 46.86 34 341.111 26.102 33.44 35 338.361 26.312 32.53 36 329,725 27.020 25.09 10.92 37 323.995 27.508 38 317.448 28.086 21.72 39 303.064 29.449 7.68 40 295.652 30.204 5.86 41 30.744 290.583 6.17 42 31.176 6.47 286.656 43 7.07 283.782 31.500 44 278.210 32.148 4.65 45 32.795 3.44 272.862 46 269.414 33.227 3.44 47 263.594 33.983 3.44 48 258.810 34.631 6.47 49 255.721 35.062 12.23 50 251.967 35.602 5.56 51 250.497 35.818 4.65 52 246.195 5.26 36,466 53 241.369 37.222 9.80 54 235.449 5.86 38.193 55 232.916 38.625 6.47 56 4.04 228.618 39.381 57 225.651 39.920 6.47 222.196 58 40.568 3.44 59 219.955 41.000 3.44 60 216.147 41.756 7.98 61 214.034 42.188 5.86 7.07 62 212.478 42.511 63 210.441 42.943 9.20 Table 7 (Continued) | | d (pm) | 2θ | I/I_0 | |----|---------|--------|---------| | 64 | 206.858 | 43.725 | 24.17 | | 65 | 203.749 | 44.427 | 16.52 | | 66 | 200.856 | 45.102 | 4.95 | | 67 | 198.605 | 45.642 | 7.98 | | 68 | 195.976 | 46.290 | 9.20 | | 69 | 195.116 | 46.506 | 10.11 | | 70 | 193.546 | 46.905 | 25.55 | | 71 | 192.398 | 47.205 | 24.28 | | 72 | 190.532 | 47.693 | 6.17 | | 73 | 189.322 | 48.017 | 7.07 | | 74 | 186.631 | 48.754 | 14.88 | | 75 | 185.472 | 49.079 | 18.46 | | 76 | 184.269 | 49.420 | 11.01 | | 77 | 183.145 | 49.744 | 13.74 | | 78 | 182.036 | 50.068 | 11.92 | | 79 | 179.862 | 50.716 | 11.01 | | 80 | 177.052 | 51.580 | 7.07 | | 81 | 175.666 | 52.017 | 12.56 | | 82 | 173.673 | 52.659 | 5.56 | | 83 | 170.754 | 53.631 | 5.26 | | 84 | 168.250 | 54.494 | 4.95 | | 85 | 166.126 | 55.250 | 4.65 | | 86 | 162.056 | 56.761 | 4.65 | | 87 | 159.831 | 57.625 | 4.65 | | 88 | 158.476 | 58.165 | 5.86 | | 89 | 157.147 | 58.705 | 3.14 | $^{^{}a}$ XRD pattern of $(H_{3}O)_{3}La_{2}F(AsF_{6})_{8}$ was taken by Dr. H. Borrmann, Max-Planck Institut für Chemische Physik fester Stoffe, Dresden, Germany. showed only the characteristic lines of LaF_3 , while the solid isolated from the solution showed only lines of $(H_3O)_3La_{2-}F(AsF_6)_8$. # 4.9. Preparation of single crystals of $(H_3O)_8La_2F(AsF_6)_{13}$ This experiment was carried out in a double T-shaped apparatus made of two PFA tubes (19 mm o.d. and 6 mm o.d.). About 0.500 g (0.27 mmol) $(H_3O)_3La_2F(AsF_6)_8$ was loaded inside the glove box into the wider tube. Later on aHF (\sim 5 ml) was condensed at 77 K and the mixture was warmed up to room temperature. After solvolysis had taken place (see Section 4.8), the clear solution was poured into the narrower tube. The solvent was slowly evaporated from this solution by maintaining a temperature gradient of about 10 K between wider and narrower tube for 6 months. Colourless single crystals of $(H_3O)_8La_2F(AsF_6)_{13}$ were found among white powder material. # 4.10. Reactions between LaF₃, H₂O and AsF₅ in aHF LaF_3 and H_2O were loaded into the PFA reaction vessel before about 5 ml of aHF and excess AsF_5 were condensed on top at 77 K. The reaction mixture was allowed to warm up to room temperature and a clear solution was obtained within a few minutes. In a first reaction, H_2O and LaF_3 were used in molar ratio 3:2; H_2O (0.046 g, 2.55 mmol); LaF_3 (0.316 g, 1.61 mmol) and AsF_5 (1.600 g, 9.42 mmol). The XRD pattern of isolated compound showed only *d*-values of $(H_3O)_3La_2F(AsF_6)_8$ (Table 7). In a second reaction, molar ratio of $H_2O:LaF_3$ was 4:1; H_2O (0.124 g, 6.90 mmol); LaF_3 (0.320 g, 1.63 mmol) and AsF_5 (2.571 g, 15.13 mmol). The XRD pattern of isolated solid product showed a mixture of $(H_3O)_8La_2F(AsF_6)_8$ and H_3OAsF_6 . # 4.11. Preparation of single crystals of $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ The reaction between La₂O₃ (0.150 g, 0.46 mmol), AsF₅ (0.200 g, 11.80 mmol) and aHF (0.040 g, 2.00 mmol) was carried out in a special stainless steel autoclave with a Teflon liner (V=6 ml). After metering all reactants into the autoclave, it was heated to 393 K for 4 months. After cooling to ambient temperature all volatiles were pumped away. Colourless single crystals of (H₃O)₄La₂F(AsF₃)₂(AsF₆)₉ were found among amorphous white powder. ## 4.12. Structural investigations Crystals of (H₃O)₈La₂F(AsF₆)₁₃ as well as of (H₃O)₄La₂-F(AsF₃)₂(AsF₆)₉ are very sensitive even to traces of moisture. Therefore, they were selected in a glove box using a surgical microscope (Opton, f = 300 mm) and mounted into 0.3 mm quartz glass capillaries which were temporarily closed by Kel-F grease and later flame-sealed outside the glove box. Single-crystal data of (H₃O)₈La₂F(AsF₆)₁₃ were collected on Mercury CCD area detector coupled with a Rigaku AFC7S diffractometer and of (H₃O)₄La₂F(As-F₃)₂(AsF₆)₉ on Rigaku AFC7S Four Circle diffractometer, both using monochromatised Mo Kα radiation. Date were processed using Rigaku Crystalclear software suite [31] and teXan for Windows program package [32]. Details of the diffraction experiments are given in Table 2. Both structures were solved using direct and successive Fourier difference methods. Although several crystals were investigated, it was not possible to clearly localise hydrogen atoms of the oxonium ions, main reasons being the fair quality and high sensitivity of all crystals as well-probable disorder of H₃O⁺ cations. For all crystallographic calculations program systems WinGX [33] and SHELXL-97 [34] were used. Further details of the crystal-structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the depository number CSD-411956, the name of the authors and citation of the paper.³ #### Acknowledgements The authors gratefully acknowledge Prof. T.A. O'Donnell for helpful discussions on chemistry in superacids and B. Sedej for chemical analysis. Financial support from the Slovenian–German Joint Fund and the Ministry of Education, Science and Sport of the Republic of Slovenia is also acknowledged. #### References - K.O. Christe, C.J. Schack, R.D. Wilson, Inorg. Chem. 14 (1975) 2224–2230. - [2] K.O. Christe, P. Charpin, E. Soulie, R. Bougon, J. Fawcett, D.R. Russell, Inorg. Chem. 23 (1984) 3756–3766. - [3] K. Lutar, B. Žemva, H. Borrmann, Eur. J. Solid State Inorg. Chem. 33 (1996) 957–969. - [4] Z. Mazej, P. Benkič, K. Lutar, in: Proceedings of the 16th International Symposium on Fluorine Chemistry, Durham, 2000, Abstracts, p. 2P-99. - [5] T.A. O'Donnell, Superacids and Acidic Melts as Inorganic Chemical Reaction Media, VCH Publishers, New York, 1993, p. 145. - [6] A.F. Clifford, H.C. Beachell, W.M. Jack, J. Inorg. Nucl. Chem. 5 (1957) 57–70. - [7] C.G. Barraclough, J. Besida, P.G. Davies, T.A. O'Donnell, J. Fluorine Chem. 38 (1988) 405–419. - [8] Z. Mazej, K. Lutar, B. Žemva, Acta Chim. Slov. 46 (1999) 229-238. - [9] M. Takashima, Y. Nosaka, T. Unishi, Eur. J. Solid State Inorg. Chem. 29 (1992) 691–703. - [10] M. Fele-Beuermann, S. Milićev, K. Lutar, B. Žemva, Eur. J. Solid State Inorg. Chem. 31 (1991) 545–556. - [11] M. Fele-Beuermann, K. Lutar, Z. Mazej, S. Milicev, B Žemva, J. Fluorine Chem. 89 (1998) 83–89. - [12] B. Žemva, A. Jesih, K. Lutar, Binary fluorides: new group of supercritical fluids, in: J.L. Luche, C. Balny, S. Benefice, J.M. Denis, C. Pétrier (Eds.), Chemical Processes and Reactions under Extreme or Nonclassic Conditions, COST Action D6; European Comission, Chambery, 1996, pp. 153–156. - [13] K. Lutar, H. Borrmann, Z. Mazej, M. Tramšek, P. Benkič, B. Žemva, The International Conference on Fluorine Chemistry'99, Tokyo, Yokohama, 1999, Abstracts, p. 3. - [14] K. Lutar, H. Borrmann, Z. Mazej, M. Tramšek, P. Benkič, B. Žemva, J. Fluorine Chem. 101 (2000) 155–1660. - [15] B. Maximov, M. Schulz, Acta Crystallogr. B41 (1985) 88-91. - [16] Z. Mazej, H. Borrmann, K. Lutar, B. Žemva, Inorg. Chem. 37 (1998) 5912–5914. - [17] U. Engelmann, B.G. Müller, Z. Anorg. Allg. Chem. 589 (1990) 51–61. - [18] O. Graudejus, B.G. Müller, Z. Anorg. Allg. Chem. 622 (1996) 1601–1608. - [19] J. Galy, R. Enjalbert, J. Solid State Chem. 44 (1982) 1-23. - [20] K. Lutar, H. Borrmann, A. Jesih, B. Žemva, Acta Chim. Slov. 46 (1999) 213–228. - [21] L. Eyring, The binary lanthanide oxides: synthesis and identification, in: G. Meyer, L.R. Morss (Eds.), Synthesis of Lanthanide and Actinide Compounds, Kluwer Academic Publishers, Dordrecht, 1991, p. 194. - [22] A. Jesih, B. Žemva, Vestn. Slov. Kem. Drus. 33 (1986) 25-28. - [23] G. Schwarzenbach, H. Flaschka, Complexometric Titrations, Methuen, London, 1969. - [24] D.D. Perrin, Masking and Demonising of Chemical Reactions, Wiley/Interscience, New York, 1970. - [25] R. Pribil, Applied Complexometry, Vol. 5, Pergamon Press, London, 1982. $^{^3}$ Crystal structures of $(H_3O)_8La_2F(AsF_6)_{13}$ and $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ were first determined on our single crystals with the help of Dr. H. Borrmann, Max-Planck Institut für Chemische Physik fester Stoffe, Dresden, Germany. To obtain better data, the determination of crystal structures of $(H_3O)_8La_2F(AsF_6)_{13}$ and $(H_3O)_4La_2F(AsF_3)_2(AsF_6)_9$ was later repeated on new crystals. All crystallographic data presented in this paper are from new batch of crystals. - [26] Y. Koryta, Anal. Chim. Acta 61 (1972) 329-411. - [27] A.K. Covington, Ion-Selective Electrode Methodology, Vols. I and II, CRC Press, Boca Raton, FL, 1984. - [28] H.M. Dess, R.W. Parry, J. Am. Chem. Soc. 79 (1957) 1589-1591. - [29] A. Vogel, Textbook of Quantitative Inorganic Analysis, Longman, London, 1978. - [30] P.W.J.M. Boumans, Introductively Coupled Plasma Emission Spectroscopy, Part 1, Wiley/Interscience, New York, 1987. - [31] Crystalclear, Rigaku Corporation, 1999. - [32] TeXan for Windows, Version 1.06, Crystal Structure Analysis Package, MSC, 1997–1999. - [33] WinGX, An integrated system of windows programs for the solution, in: L.J. Ferrugia (Ed.), Refinement and Analysis of Single Crystal X-ray Diffraction Data, J. Appl. Cryst. 32 (1999) 837–838. - [34] G.M. Sheldrick, SHELXL-97: Program for Refinement of Crystal Structures, University of Göttingen, Germany, 1997.